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Abstract— Linear nested codes, where two or more sub-
codes are nested in a global code, have been proposed as
candidates for reliable multi-terminal communication. In this
paper, we consider nested array-based spatially coupled LDPC
codes and propose a line-counting based optimization scheme for
minimizing the number of dominant absorbing sets in order to
improve its performance in the high signal-to-noise ratio regime.
The presented multi-step optimization process is applied first to
one of the nested codes, then an optimization of the remaining
nested codes is carried out based on these code constraints. We
also show that for certain code parameters, dominant absorbing
sets in the Tanner graphs of all nested codes can be completely
removed using our proposed optimization strategy.

I. Introduction
One application for linear nested codes is given by error

correction in wireless multi-terminal networks, where M mes-
sage sequences ui of length ki, i = 1, 2, . . . ,M, are encoded
separately and then are algebraically superimposed via bitwise
XOR at the physical layer prior to transmission [1], [2]. A
codeword corresponding to each message vector, xi ∈ F

n
2,

belongs to a different nested sub-code Ci generated via a
generator matrix Gi. The transmitted codeword x is an element
of the global code C . The generator matrix G of the global
code is obtained by stacking all individual Gi matrices [3].

Spatially coupled low density parity-check (SC-LDPC)
codes [4] are sparse graph codes that are known to ap-
proach the capacity of binary input memoryless channels
under belief propagation (BP) decoding [5]. SC-LDPC codes
are obtained by coupling, or connecting, multiple Tanner
graphs corresponding to an LDPC block code (LDPC-BC).
The Tanner graph of LDPC-BCs contain small sub-structures
called absorbing sets (ABSs) [6] that are known to cause
the BP decoder to fail. These failures are responsible for
the error-floor phenomenon, seen by a flattening of the bit
error rate (BER) performance curve in the high signal-to-noise
ratio (SNR) region. SC-LDPC codes have superior error floor
performance when compared to their BC counterpart, mainly
because spatial coupling breaks these harmful ABSs [7]. It is
well known that 6-cycles exist in the dominant ABSs of an
array-based (AB) SC-LDPC codes [8], [9], [10]. In our earlier
work [10], a line-counting based algorithm was proposed to
enumerate 6-cycles in AB-SC-LDPC codes, and thus can be
used to minimize harmful ABSs in the code’s Tanner graph.

In this paper, we propose an adapted line-counting (ALC)
technique to optimize the design of nested AB-SC-LDPC
codes. The objective of a finite length nested code design
is to ensure that each nested sub-code and the global code
have a small number of dominant ABSs in the Tanner graph

This material is based on work supported by the National Science Founda-
tion under Grant Nos. ECCS-1710920, ECCS-1711056, and OIA-1757207.

when compared to the underlying LDPC-BC. Since the parity-
check matrices of different nested sub-codes partially overlap,
the null-spaces for these sub-codes intersect. Consequently, an
optimization of one nested sub-code affects other nested sub-
codes, and thus impose constraints on the optimization. Since
multiple design constraints must now be jointly satisfied, the
construction of nested LDPC-BCs for multi-terminal setting is
more challenging than the one for point-to-point LDPC-BCs.
In contrast to the line counting approach proposed in [10], the
presented ALC technique allows the enumeration of 6-cycles
in arbitrary column weight 3 sub-matrices in polynomial time,
facilitating a tractable nested code optimization. Note that the
construction of nested regular and irregular LDPC-BCs have
been considered in [3] and [11], respectively. However, to the
best of our knowledge, an extension to nested AB-SC-LDPC
codes has not been addressed in the open literature so far.

II. Preliminaries

A. Protograph and Array-Based LDPC Codes
Let GH = (V ∪ C, E) denote the bipartite Tanner graph

corresponding to a parity-check matrix H ∈ Fm×n
2 , where

V = {v1, v2, . . . , vn} is a set of n variable nodes (VNs),
C = {c1, c2, . . . , cm} is a set of m check nodes (CNs), and
E is the set of edges connecting V to C. LDPC-BCs can
be designed based on a protograph [12], which is a small
Tanner graph consisting of p VNs and γ CNs, p ≥ γ, with
design rate R = 1 − γ

p . Let B = [Bi, j] represent the base
matrix corresponding to the Tanner graph of protograph GB.
By applying a graph lifting procedure with lifting factor p,
that is by replacing each non-zero entry of B with a sum of
Bi, j p×p non-overlapping permutation matrices, and each zero
entry with an all-zero matrix Bi, j of size p×p, we can construct
a LDPC-BC parity-check matrix H ∈ Fγp×p2

2 . In the case of an
AB-LDPC-BC, B is a γ × p all-ones matrix, p is prime, and
the permutations used in edge-spreading are specific shifted
identity matrices, also known as circulant matrices [13]. The
resulting block matrix structure of an (γ, p) AB-LDPC-BC
parity-check matrix is represented as

H(γ, p) =


I I I · · · I
I σ σ2 · · · σp−1

...
...

... · · ·
...

I σγ−1 σ2(γ−1) · · · σ(γ−1)(p−1)

 ,
where the circulant σz is obtained by circularly left-shifting
the non-zero entries of the identity matrix I by an amount
z mod p. Here, σ0 = I, and each circulant has dimension p×p.
Each row (resp. column) of sub-matrices form a row (resp.
column) group. There are a total of p (resp. p2) column groups
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(resp. columns) and γ (resp. γp) row groups (resp. rows) in
H(γ, p). Note that γ is also the column weight of H(γ, p).

B. Array-Based Spatially Coupled LDPC Codes
A protograph approach to the construction of SC-LDPC

codes involves coupling L copies of the base Tanner graph GB
via edge-spreading [14]. In terms of matrices, edge-spreading
is equivalent to splitting B into a sum of m + 1 matrices of
the same dimension as B, such that B = B0 + B1 + · · · + Bm,
where m denotes the memory of the code. Similar to the case
of LDPC-BCs, the parity-check matrix of a terminated SC-
LDPC code H(γ, p, L) ∈ Fγp(L+m)× Lp2

2 is obtained by graph
lifting the terminated base matrix Bsc. In terms of AB-SC-
LDPC codes, the edge-spreading process splits H(γ, p) into
a sum of m + 1 matrices of the same dimension as H(γ, p),
yielding H(γ, p) = H0 + H1 + · · ·+ Hm [8]. These matrices are
arranged as

H(γ, p, L) =



H0

H1
. . .

...
. . . H0

Hm H1

. . .
...

Hm


, (1)

where L is the number of column blocks of H(γ, p, L) and
the code has a constraint length of (m + 1)p2. AB-SC-LDPC
matrices can be obtained from AB-LDPC-BC matrices via a
spreading matrix Bm ∈ F

γ×p
m+1, where an entry f ∈ {0, . . . ,m} in

position (i, j) of this matrix indicates that the circulant block
(i, j) of H(γ, p) is copied to its corresponding position in H f
[8]. In the remainder of this paper, LDPC codes are considered
as AB only.

C. Nested Codes
A nested code consists of a group of M sub-codes Ci, i =

1, 2, . . . ,M, M ≥ 2, nested in a global code C of rate k/n with
the property Ci ⊂ C . Nested codes are used to jointly encode
M different information vectors ui ∈ F

ki
2 , ki < k, to generate an

overall codeword x ∈ Fn
2, which is a linear combination of all

the codewords xi obtained from each of the sub-codes. Nested
codes can also be interpreted via the parity check matrices
Hi ∈ F

(n−ki)×n
2 and H ∈ F(n−k)×n

2 corresponding to the codes Ci
and C , respectively, which form the null spaces of matrices
Hi and H, respectively. Note that the matrices Hi, for all i, and
H can be considered as (potentially overlapping) sub-matrices
of a larger Ĥ ∈ Fm×n

2 matrix, where n − ki < m ≤ n ∀i and
n − k < m ≤ n, respectively. The construction of Hi and H
from Ĥ is discussed in detail in [3]. We refer to the column
weight ωi (resp. ω) of sub-code Ci (resp. global code C ) as
the column weight of its corresponding (regular) parity-check
matrix Hi (resp. H).

D. Absorbing Sets
In the Tanner graph G of an LDPC code, let X ⊆ V and let

O(X) be the set of neighboring CNs of X with odd degree.

Definition 1 ( [6]). For a ≥ 0, b ≥ 0, an (a, b) ABS set X
is a set of VNs with |X| = a, |O(X)| = b, and the property
that each VN in X has strictly fewer neighbors in O(X) than
in C \ O(X). An (a, b) ABS is a fully ABS if, additionally, all
nodes in V \X have strictly more neighbors in C\O(X) than in
O(X). A minimal ABS refers to an ABS which has the smallest

possible existing value for a, in a given LDPC Tanner graph,
and where b is the smallest possible value for the given a.

Remark 1. For γ = 3, an (3, 3) ABS is the smallest ABS
existing in a column weight 3 AB-LDPC-BC [6] or AB-SC-
LDPC code [8]. The ABS contains a 6-cycle; therefore by
eliminating these cycles via spatial coupling, we also eliminate
all (3, 3) ABSs from the Tanner graph of γ = 3 AB-SC-LDPC
codes [8], [10]. For γ = 4, a (4, 4) ABS is a minimal ABS in an
AB-LDPC code for p = 5, 7; on the other hand, a (5, 4) ABS is
a minimal ABS in an AB-LDPC-BC for the case 7 < p < 19;
a (6, 4) ABS exists in an AB-LDPC-BC for p > 5, and it is a
minimal ABS for the case p > 19 [6].

E. Line-counting

We briefly review the line-counting method of [10] in the
following. Let qt ∈ {0, . . . , γ − 1} and s` ∈ {0, . . . , p − 1}
denote the row group number, and the row number within
a particular row group of an AB-LDPC matrix, respectively.
Also, let j` ∈ {0, . . . , p − 1} and ku ∈ {0, . . . , p − 1} represent
the column group number and the column number inside
a particular column group of an AB-LDPC matrix H(γ, p).
Therefore, each row (resp. column) of an AB matrix is given
by rt = qt p + s` (resp. c` = j`p + ku). In this way, the
location of an entry of an AB matrix (rt, c`) may be written as
(qt, sv; j`, ku), t, `, u, v ∈ {1, 2, 3}. A 6-cycle spans three distinct
row and column groups of an AB matrix [10]. The columns
of a 6-cycle have indices c1, c2, c3 and they exist in distinct
column groups j1, j2, j3, respectively. Similarly, the rows of
a 6-cycle have indices r1, r2, r3 and they exist in distinct row
groups q1, q2, q3, respectively.

In an column weight 3 AB-LDPC (sub) matrix, a region
R (or block cycle) consists of at least six (not necessarily
contiguous) circulant matrices spread across three row groups,
with one row group being a row group of I matrices only.
W.l.o.g, for any 6-cycle in R, we have the following [10]:
• c2 > c1 and w1 p ≤ c1 < w2 p, w3 p ≤ c2 < w4 p, where

w1,w2,w3,w4 are integers satisfying 0 ≤ w1 ≤ p − 1,
1 ≤ w2 ≤ p − 1, w1 + 1 ≤ w3 ≤ p, and w2 + 1 ≤ w4 ≤ p.
In the case where c1 and c2 are associated with a row
group of I matrices, we obtain c2 − c1 = np, where n =
{1, . . . ,w4 − w1 − 1};

• αp ≤ c3 < βp, where α and β are integers satisfying
0 ≤ α ≤ p − 1, 1 ≤ β ≤ p, and α < β.

Note that even after spatial coupling, the location of circulant
matrices in R can be described by their corresponding posi-
tions in the block matrix H(γ, p, L). The range of c3 in R can
also be expressed using c1, c2 as [10]

αp
2
≤ c2 −

1
2

c1 <
βp
2
,

p2 + αp
2

≤ c2 −
1
2

c1 <
p2 + βp

2
,

p2 − βp < c2 − 2c1 ≤ p2 − αp, or − βp < c2 − 2c1 ≤ −αp.
(2)

A 6-cycle with columns c1 and c2 exists in R if an integer
point on the line c2 − c1 = np in the (c1, c2) plane lies within
the boundaries described by the line inequalities in (2). Hence,
the number of 6-cycles in R is determined by the number of
integer pairs (c1, c2) on the line c2 − c1 = np enclosed within
these boundaries [10].
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III. Nested AB-SC-LDPC Codes

A. Example Construction with M = 2
We begin with an example of an M = 2 nested AB code

construction to demonstrate our approach, although generaliza-
tion to larger M can be achieved in a similar fashion. Consider
Ĥ = H(5, p) with corresponding parity-check matrix

H(5, p) =


I I I · · · I
I σ σ2 · · · σp−1

I σ2 σ4 · · · σ2(p−1)

I σ3 σ · · · σ3(p−1)

I σ4 σ3 · · · σ4(p−1)

 .
We can form nested AB-LDPC-BC sub-codes C1, C2, and
C from sub-matrices H1(4, p), H2(4, p), and H(3, p), respec-
tively, where the matrices are comprised of the first four
(black and blue), first three and fifth (black and red), and first
three (black only) row groups of H(5, p), respectively. Given
a global AB nested code of column weight 3 (e.g., H(3, p)), it
follows from the array structure [13] that there are γ−ωi + 1,
γ ≥ 5, possible sub-codes Ci with column weight ωi ≥ 4. Note
that the design rate Ri = 1 − ωi

p of Ci decreases with ωi. As a
result, constructing high rate nested codes with large ωi also
requires a relatively large p compared to a nested code with
smaller ωi. In turn, this also makes each sub-code optimization
more computationally intensive as M increases.

Nested AB-SC-LDPC matrices can be constructed in a
similar way, with parity-check matrices denoted as Hi(4, p, L)
and H(3, p, L) obtained by edge-spreading Hi(4, p) and
H(3, p) via spreading matrices Bi,m ∈ F

4×p
m+1, i ∈ {1, 2}, and

Bm ∈ F
3×p
m+1, respectively. Note that since the codes are

nested, Bm is a sub-matrix of Bi,m. For the case M = 2, the
optimization of nested AB-SC-LDPC codes can be performed
in two ways:

Method 1: First, optimize Bm to construct H(3, p, L) from
H(3, p). Then optimize the last row of B1,m (resp. B2,m)
by incorporating the constraints given by Bm to construct
H1(4, p, L) from H1(4, p) (resp. H2(4, p, L) from H2(4, p)).

Method 2: First, optimize one of the Bi,m matrices to construct
Hi(4, p, L) from Hi(4, p) and then by using the constraints,
optimize the remaining parity-check matrix. For example, we
may first optimize the B1,m matrix to construct H1(4, p, L)
from H1(4, p) and optimize the last row of B2,m to construct
H2(4, p, L) from H2(4, p).

B. Terminal Lift

To simplify our code search for good nested code designs,
we choose to apply an (additional) circulant-based terminal
lift with lifting factor J. This results in quasi-cyclic LDPC-
BCs (QC-LDPC-BCs) and QC-SC-LDPC codes. QC codes
are well known to facilitate hardware implementation [4].
The parity-check matrices obtained by applying a terminal lift
to Hi(4, p, L) and H(3, p, L) are denoted as Hi(4, p, L, J) ∈
F

4pJ(L+m)×JLp2

2 , i = 1, 2, and H(3, p, L, J) ∈ F3pJ(L+m)× JLp2

2 ,
respectively. A terminal lift serves two purposes: firstly it helps
us generate sufficiently long nested codes to achieve good
performance for typical applications, and secondly, we are able
to further reduce the multiplicity of, or even eliminate, any
residual ABSs in the nested Tanner graphs of Hi(4, p, L) and
H(3, p, L) that remain after the edge-spreading construction.

C. 6-cycles and (6, 4) ABSs in AB-LDPC Codes
We now state some useful results on dominant objects of

AB-SC-LDPC codes.

Lemma 1. For a = 4, 5, 6, an (a, 4) ABS in an AB-LDPC
code with parity-check matrix H(4, p) and an AB-SC-LDPC
code with parity-check matrix H(4, p, L) contains at least one
6-cycle.
The proof is omitted due to space constraints.

Remark 2. From Lemma 1 we deduce that by eliminating
all 6-cycles via spatial coupling, we can also eliminate all
(a, 4) ABSs from the Tanner graph of column weight 4 nested
AB-SC-LDPC codes, where a = 4, 5, 6.

Note that a 6-cycle in an AB parity-check matrix spans 3 row
groups [8] and it spans at most m+1 contiguous column blocks
of (1). Let µ`, ` = 1, . . . ,m + 1, represent the total number of
6-cycles present in precisely ` contiguous column blocks of
(1) and let µ be the total number of 6-cycles in H(γ, p, L).
From the repeated structure of H(γ, p, L) it follows that the
total number of 6-cycles in H(γ, p, L) is µ =

∑m+1
`=1 (L−`+1)µ`

[8].

D. Adapted Line Counting
The line-counting method discussed in Section II-E is

restricted to the enumeration of 6-cycles in H(3, p, L) only,
i.e., row groups 0, 1, and 2. To overcome this shortcoming,
we propose an adapted line-counting (ALC) method that
is generalized to enumerate 6-cycles from other row group
triples of the larger parity-check matrix Ĥ. By constrained
optimization of the entries of Bi,m and Bm matrices via ALC,
we can obtain Hi(4, p, L) and H(3, p, L) matrices, respectively,
whose Tanner graphs contain as few (6, 4) and (3, 3) ABSs as
possible, respectively. The conventional cycle counting method
discussed in [15] has complexity O(gE2/p) = O(gγ2 p3), where
g is the girth and E = γp2 is the number of edges in the graph,
respectively. In comparison, ALC has complexity O(p2) and
hence is more desirable for the optimization of nested codes.

1) ALC Based Optimization for M = 2: We consider
the three column weight 3 sub-matrices of Hi(4, p), denoted
as H(z)

i (3, p), z = 1, 2, 3, where H(1)
i (3, p), H(2)

i (3, p), and
H(3)

i (3, p) consist of row groups (0, 1, 2), (0, 2, 3), and (0, 1, 3)
of Hi(4, p), respectively.1 Let H(z)

i (3, p, L) ∈ F3p(L+m)× Lp2

2 be a
SC-LDPC matrix obtained by edge-spreading H(z)

i (3, p) via a
sub-matrix B′i,m ∈ F

3×p
m+1 of the spreading matrix Bi,m, whose

row indices correspond to the row group indices of H(z)
i (3, p).

For example, if z = 2 then B′i,m is comprised of rows (0, 2, 3)
of Bi,m.

With ALC (details to follow in Section III-D2), 6-cycles
can be enumerated for any of the H(z)

i (3, p, L) matrices. The
global code can be optimized by searching over the set
of edge-spreading matrices B′i,m for H(1)

i (3, p, L) (any i) via
numerical optimization [10], where the number of 6-cycles
is the optimization criteria, evaluated by ALC. To optimize
Hi(4, p, L), we pick z1, z2 ∈ {0, 1, 2}, z1 , z2, and first optimize
H(z1)

i (3, p, L). Two row groups of H(z2)
i (3, p, L) are now fixed

1Note that there is one more row group, namely (1, 2, 3). However it is
sufficient to examine only the three groups described above since they are
sufficient to form the parity-check matrices of all the nested codes.
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and we minimize the number of 6-cycles in H(z2)
i (3, p, L) by

determining the edge-spreading for the remaining (unfixed)
row group of z2. In general, this approach can be repeated as
many times as necessary to sequentially optimize the edge-
spreading matrices row group by row group.

2) Description for ALC: Recall from Section II-E that R is
contained in a column weight 3 sub-matrix of an AB parity-
check matrix, and c1, c2, c3 are the column indices of a 6-cycle
in R.
Lemma 2. For ALC, the range of c3 in R can be expressed
via c1 and c2 as(

1 −
q3

q2

)
αp +

λp2

q2
≤ c2 −

q3

q2
c1 <

(
1 −

q3

q2

)
βp +

λp2

q2
, (3)

where c2 > c1, λ ∈ {2 − 2p, . . . , 2p − 2}, q2, q3 ∈ {1, . . . , p − 1}
and q2 , q3.

Sketch of Proof. Recall that a circulant matrix σqt j` in an
AB code has its non-zero elements located at (st, ku), where
st ≡ qt j` + ku mod p. W.l.o.g., let row groups q2 and q3 of an
AB matrix consist of σq2 j` and σq3 j` circulant matrices, respec-
tively, where q2 , q3. The edges corresponding to (r2, c3) and
(r2, c2) both exist in row s2. Hence, from the value of s2 we
obtain the relation q2 j2+k2 ≡ q2 j3+k3 mod p. Similarly, from
the value of s3 we may obtain q3 j1 + k2 ≡ q3 j3 + k3 mod p.
As a result, from the values of s2 and s3 we obtain relations
k3 − k2 = q2 j2 − q2 j3 − λ1 p and k3 − k2 = q3 j1 − q3 j3 − λ2 p, re-
spectively, where λ1, λ2 ∈ {1− p, . . . , p−1}. Since the left hand
sides of both of these relations are identical, we can equate
the right hand side expressions, and after rearranging, we get
j3 =

q2 j2−q3 j1−λp
q2−q3

, where λ = λ1 − λ2, λ ∈ {2 − 2p, . . . , 2p − 2}.
Finally, by invoking the inequality α ≤ j3 ≤ β − 1 and by
taking into account the corresponding 6-cycle column value
c3 as a function of c1 and c2, we obtain (3). �

Note that (2) is a special case of (3) because, for parameters
(λ, q2, q3) taking on the values (0, 2, 1), (1, 2, 1), (1, 1, 2),
and (0, 1, 2), we recover the first, second, third, and fourth
inequality in (2), respectively. Based on the principles of
Cartesian geometry, the total number of 6-cycles in R for a
given λ, Nλ,R, can be derived using the method discussed in
[10]. Eventually, the total number of 6-cycles obtained via
ALC in a AB parity-check matrix region R is given by

∑
λNλ,R

with computational complexity O(p2).

IV. AB-SC-LDPC Nested Code Optimization Procedure
In this section, we outline the strategy for optimizing the

AB-SC-LDPC nested codes for M = 2. First, a numerical
optimization scheme is employed to determine the entries of
the edge-spreading matrices Bi,m and Bm to construct parity-
check matrices Hi(4, p, L) and H(3, p, L) from Hi(4, p) and
H(3, p), respectively. ALC is used in each optimization step
for computing the number of 6-cycles in the underlying AB-
SC-LDPC parity-check matrices. Finally, a terminal lift is
applied to further reduce residual ABSs in the Tanner graphs
of optimized Hi(4, p, L) and H(3, p, L) matrices.

A. Step 1: ALC Based Optimization
We outline the approach of Method 1 to first optimize

H(3, p, L), and then optimize Hi(4, p, L) based on the con-
straints given by H(3, p, L).
• Inputs to the ALC based optimization algorithm are the

H(3, p) matrix and the empty Bm matrix. The optimization

algorithm is allowed to run until either the number of 6-
cycles in H(3, p, L) obtained in an optimization iteration
is 0, or until the number of optimization iterations exceed
a predetermined threshold Imax, whichever occurs first. At
the end of this step, we obtain Bm, and the spreading for
row groups (0, 1, 2) are fixed.

• For a given i, inputs to the ALC based optimization
algorithm are H(2)

i (3, p) and matrix B′i,m which will form
rows (0, 2, 3) of Bi,m. Note that the first two rows of
B′i,m are initialized with rows {0, 2} of Bm, whereas the
last row of B′i,m is empty and will be determined in this
step. The optimization algorithm is now allowed to run
until either all the 6-cycles in H(2)

i (3, p, L), obtained by
edge-spreading H(2)

i (3, p) using B′i,m, are eliminated or the
number of optimization iteration exceed a threshold I(i)

max,
whichever occurs first. At the end of this step, we obtain
the complete Bi,m matrix. The procedure is then repeated
for the other sub-code i.

• The Hi(4, p, L) and H(3, p, L) matrices are now obtained
by edge-spreading according to Bi,m.

Method 2 largely follows the approach in Method 1, but here
Hi(4, p, L) is optimized first (as described in Section III-A).
The details are omitted due to space constraints.

B. Step 2: Terminal Lift
The terminal lifted matrices Hi(4, p, L, J), i = 1, 2, and

H(3, p, L, J) may now be obtained by lifting the non-zero
(resp. zero) entries of Hi(4, p, L) and H(3, p, L) via randomly
generated circulant (resp. all-zero) matrices of size J × J,
respectively. The goal of the terminal lift is to break any
remaining 6-cycles in the Tanner graphs of Hi(4, p, L) and
H(3, p, L). In this paper, we used a straightforward approach to
randomly select circulants for m+1 contiguous column blocks
of (1) for H1(4, p, L, J) until either all 6-cycles were eliminated
or a maximum time duration elapsed. These permutations
were repeated periodically to form the complete H1(4, p, L, J)
matrix (where four of the five row groups are fixed). Note that
the global code is now fixed. We complete the construction
by selecting circulants to optimize the fifth row group. The
optimized QC-SC-LDPC nested codes C1, C2, and C are now
obtained as the null spaces of H1(4, p, L, J), H2(4, p, L, J), and
H(3, p, L, J), respectively.

V. Numerical Results
We now demonstrate the effectiveness of the procedure

outlined in Section IV by providing 6-cycle enumeration
results for H(3, p, L) and Hi(4, p, L), i = 1, 2, for syndrome
former memories m = 1, 2. We begin with the ALC based op-
timization described in Section IV-A, i.e., the following results
are obtained before applying a terminal lift. As a benchmark
for comparing our optimization results we also enumerate 6-
cycles in the matrix Hunc(3, p, L) (resp. Hi,unc(4, p, L)), which
is a block diagonal matrix in the form of (1) with m = 0 (an
uncoupled or non-optimized matrix) containing L diagonally
placed blocks of H(3, p) (resp. Hi(4, p)) AB-LDPC-BC parity-
check matrices. Note from Section III-C that it is sufficient to
enumerate the quantities µ1, µ2 (resp. µ1, µ2, µ3) in order to
determine the total number of 6-cycles µ in an entire AB-SC-
LDPC matrix with m = 1 (resp. m = 2) for an arbitrary L. Also,
note that for the uncoupled matrices, it is sufficient to only
compute µ1 since 6-cycles can only span a single column block
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of ( 1), t h e n µ = µ 1 L . F or H u n c ( 3, p ) (r es p. H i,u n c ( 4, p ), i = 1 , 2),
t h e v al u es of µ 1 ar e 3 0 0 , 8 8 2, a n d 3 6 3 0 (r es p. 1 2 0 0 , 3 5 2 8, a n d
1 4 5 2 0) f or p = 5 , 7 , a n d 1 1, r es p e cti v el y.  T h e e n u m er ati o n
r es ults i n  Ta bl e I a n d II pr o vi d e r es ults f or n est e d  A B- S C-
L D P C  m atri c es c o nstr u ct e d b as e d o n  A L C b as e d o pti mi z ati o n
M et h o ds 1 a n d 2, r es p e cti v el y. F or all t a bl es, pl ai n t e xt
c orr es p o n ds t o m = 1 a n d b ol d f o nt c orr es p o n ds t o m = 2.
Fi n all y, t h e r es ults i n  Ta bl e III pr es e nt t h e a v er a g e v al u es of
µ 1 , µ2 , a n d µ 3 f or r a n d o ml y g e n er at e d ( n o n- o pti mi z e d)  A B-
S C- L D P C n est e d  m atri c es,  w h er e r a n d o ml y g e n er at e d B m a n d
B i,m m atri c es  w er e s el e ct e d.

p H ( 3, p , L ) H 1 ( 4, p , L ) H 2 ( 4, p , L )
(µ 1 , µ2 ), (µ 1 , µ2 , µ3 ) (µ 1 , µ2 ), (µ 1 , µ2 , µ3 ) (µ 1 , µ2 ), (µ 1 , µ2 , µ3 )

5 ( 0, 0) , (0 , 0 ) ( 3 0, 4 0) , (2 0 , 0 , 0 ) ( 4 0, 5 0) , (0 , 0 , 1 0 )
7 ( 1 4, 2 8) , (0 , 0 , 0 ) ( 7 0, 1 6 1) , (2 8 , 6 3 , 4 9 ) ( 1 3 3, 1 9 6) , (4 2 , 4 2 , 5 6 )
1 1 ( 2 2, 9 9) , (0 , 0 , 0 ) ( 4 0 7, 7 3 7) , (1 2 8 , 1 8 7 , 2 7 5 ) ( 3 7 4, 8 2 5) , (7 7 , 1 4 3 , 2 5 3 )

T A B L E I: Val u es of µ 1 , µ2 , µ3 o bt ai n e d f or di ff er e nt n est e d S C-
L D P C  m atri c es usi n g  M et h o d 1.

p H ( 3, p , L ) H 1 ( 4, p , L ) H 2 ( 4, p , L )
(µ 1 , µ2 ), (µ 1 , µ2 , µ3 ) (µ 1 , µ2 ), (µ 1 , µ2 , µ3 ) (µ 1 , µ2 ), (µ 1 , µ2 , µ3 )

5 ( 5, 1 0) , (0 , 0 , 0 ) ( 7 0, 5 0) , (0 , 0 , 0 ) ( 3 5, 5 5) , (0 , 0 , 0 )
7 ( 1 4, 7) , (0 , 0 , 2 8 ) ( 8 4, 8 4) , (0 , 7 , 6 3 ) ( 9 1, 1 2 6) , (2 1 , 3 5 , 9 1 )
1 1 ( 4 4, 1 7 6) , (0 , 3 3 , 5 5 ) ( 2 2 0, 7 7 0) , (5 5 , 1 1 0 , 1 4 3 ) ( 3 1 9, 7 9 2) , (4 4 , 2 5 3 , 2 7 5 )

T A B L E II: Val u es of µ 1 , µ2 , µ3 o bt ai n e d f or di ff er e nt n est e d S C-
L D P C  m atri c es usi n g  M et h o d 2.

p H ( 3, p , L ) H 1 ( 4, p , L ) H 2 ( 4, p , L )
(µ 1 , µ2 ), (µ 1 , µ2 , µ3 ) (µ 1 , µ2 ), (µ 1 , µ2 , µ3 ) (µ 1 , µ2 ), (µ 1 , µ2 , µ3 )

5 ( 6.6 7 , 2 6 .7) , (5 , 1 0 , 1 .7 ) ( 3 3.3 , 9 3 .4) , (1 0 , 4 1 .7 , 1 4 .9 ) ( 3 5, 8 0) , (2 0 , 3 6 .7 , 1 1 .6 )
7 ( 2 3.3 , 4 9 .1) , (3 .5 , 2 1 , 7 ) ( 1 2 7, 2 7 1) , (6 5 , 1 1 7 , 4 2 ) ( 1 3 5, 2 2 9) , (4 0 , 1 2 5 , 5 2 )
1 1 ( 1 3 2, 2 7 1) , (5 5 , 6 6 , 8 4 ) ( 5 8 7, 9 8 9) , (1 6 9 , 3 7 0 , 2 7 8 ) ( 5 1 3, 1 0 4 6) , (1 9 1 , 3 3 3 , 2 9 7 )

T A B L E III: A v er a g e v al u es of µ 1 , µ2 , µ3 o bt ai n e d f or r a n d o ml y
g e n er at e d n est e d  A B- S C- L D P C  m atri c es.

T h e r es ults s h o w t h at t h e u n c o u pl e d  m atri c es c o nt ai n a
l ar g e n u m b er of 6- c y cl es ( a n d h e n c e d o mi n a nt  A B Ss).  B y
c o m p ari n g t h e r es ults i n  Ta bl es I a n d II,  w e n oti c e t h at, as
e x p e ct e d, s p ati al c o u pli n g is a bl e t o si g ni fi c a ntl y r e d u c e t h e
n u m b er of d o mi n a nt  A B Ss. F urt h er,  M et h o d 1 r es ults i n a
l o w er  m ulti pli cit y f or t h e gl o b al S C- L D P C  m atri x H ( 3, p , L ),
b ut i n a g e n er all y hi g h er  m ulti pli cit y f or t h e n est e d S C- L D P C
m atri c es.  M et h o d 2, o n t h e ot h er h a n d, s h o ws t h e o p p osit e
b e h a vi or - a r e d u c e d  m ulti pli cit y f or t h e n est e d c o d es, b ut a
r el ati v el y hi g h er  m ulti pli cit y f or t h e gl o b al c o d e. Fr o m  Ta bl e
II,  w e als o n ot e t h at f or p = 5 t h er e ar e n o 6- c y cl es pr es e nt
i n eit h er c ol u m n  w ei g ht 3 or c ol u m n  w ei g ht 4 n est e d c o d es,
w hi c h, b y i n v o ki n g  R e m ar ks 1 a n d 2, i m pli es t h e a bs e n c e
of ( 3 , 3) a n d ( 4 , 4)  A B Ss, r es p e cti v el y. Fr o m  Ta bl e III  w e
o bs er v e t h at r a n d o ml y g e n er at e d n est e d S C- L D P C  m atri c es
c o nt ai n a si g ni fi c a ntl y l ar g er n u m b er of 6- c y cl es ( a n d h e n c e
d o mi n a nt  A B Ss)  w h e n c o m p ar e d t o n est e d  A B- S C- L D P C
m atri c es o bt ai n e d vi a  A L C b as e d o pti mi z ati o n.

F or m = 2, Fi g. 1 s h o ws t h e n u m b er of 6- c y cl es v ers us t h e
c o u pli n g l e n gt h L f or n est e d  A B- S C- L D P C  m atri c es H ( 3, p , L )
a n d H 1 ( 4, p , L ), r es p e cti v el y, o bt ai n e d vi a  M et h o d 1,  M et h o d
2, a n d a r a n d o m g e n er ati o n.  We a g ai n o bs er v e t h at r a n d o ml y
g e n er at e d n est e d  A B- S C- L D P C  m atri c es c o nt ai n  m or e 6-
c y cl es ( a n d h e n c e  m or e d o mi n a nt  A B Ss) i n b ot h c ol u m n
w ei g ht 3 a n d c ol u m n  w ei g ht 4 c as es c o m p ar e d t o n est e d
m atri c es o bt ai n e d vi a  M et h o d 1 or 2.

T o c o n cl u d e,  w e n ot e t h at b y a p pl yi n g t h e t er mi n al lift
d es cri b e d i n S e cti o n I V- B, e v e n f or s m all J , it is p ossi bl e
t o si g ni fi c a ntl y r e d u c e, or e v e n eli mi n at e d o mi n a nt  A B Ss. F or
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Fi g. 1: T ot al n u m b er of 6- c y cl es v ers us L f or gl o b al c o d e c orr es p o n d-
i n g t o H ( 3, p , L ) a n d s u b- c o d e c orr es p o n di n g t o H 1 ( 4, p , L ) f or m = 2
a n d p = 7.  T h e n u m b er of 6- c y cl es i n t h e gl o b al c o d e o bt ai n e d vi a
M et h o d 1 is z er o.

e x a m pl e,  wit h p = 5 , 7, m = 1 , 2, a n d p = 1 1 , m = 2, a n d a
lifti n g f a ct or of o nl y J = 5,  w e ar e a bl e t o c o m pl et el y eli mi n at e
all 6- c y cl es.  T his  m e a ns t h at a n y ( 3 , 3), ( 4 , 4), ( 5 , 4) a n d ( 6 , 4)
A B Ss ar e br o k e n aft er a t er mi n al lift of t h e  A B- S C- L D P C
n est e d c o d es gi v e n i n  Ta bl es I a n d II.
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